HOW THE PIPETTE STORY BEGAN...

Over a century ago, Louis Pasteur invented the glass Pasteur pipette to reduce contamination when transferring samples. The Pasteur pipette is still in use today.

The next significant improvement on pipettes occurred in the late 1950s with the introduction of a handheld, piston-operated pipette as a safe alternative to potentially dangerous mouth pipetting. The first handheld pipettes had pre-established volume setting (fixed volume pipettes). Further improvement was provided with the more flexible stepper volume setting (variable volume pipettes).

In 1972, Dr. Warren Gilson invented the first continuously adjustable pipette. As an original error-preventing feature, the selected volume was now clearly displayed on the Gilson pipette (direct digital readout). Today, Gilson precision pipettes are still the world standard for accuracy, precision, and reliability.

Today, the company still maintains its continuous effort of creativity and offers innovative, robust, and reliable pipettes to help scientists in their daily work.

The pipetting system is our core expertise, and we truly enjoy sharing this knowledge and experience with pipette users so that they may achieve their goals.

This guide will provide you with keys to understand how pipettes should be used and to get the most out of them. Examples given are based on our own pipette range, but the techniques described are equally applicable to other brands of pipettes and tips.

Gilson is one of the winners of the Red Dot Award: Product Design for MICROMAN E.
TABLE OF CONTENTS

CHAPTER 1 - SELECTING THE RIGHT PIPETTE | 8
- Working Principle of Pipettes | 8
- The Right Choice for your Application | 11
- Specific Pipettes for Specific Vessels | 13
- High Throughput and Repetitive Pipetting | 14

CHAPTER 2 - PIPETTING TECHNIQUES | 16
- Adjust the Volume Display | 16
- Forward or Reverse Mode Pipetting | 17
- Tips for Mistake-Free Pipetting | 23
- Pipetting Ergonomics | 23

CHAPTER 3 - SELECTING THE RIGHT TIP | 26
- Fitting a Disposable Pipette Tip | 26
- Choosing the Best Tip for Your Application | 28
- Evaluating Tip Quality | 30

CHAPTER 4 - PREVENTING CONTAMINATION | 32
- Types of Contamination and How to Prevent Them | 32
- Decontaminating Your Pipette | 34

CHAPTER 5 - PIPETTE SERVICE & MAINTENANCE | 36
- Pipette Specifications According to ISO 8655 | 36
- Repair in the Lab or Return for Service? | 36
- Quick Pipette Diagnosis | 37
- How to Calculate Volumetric Accuracy and Precision | 38
- Pipette Calibration | 39
- Calibration with the Gravimetric Method | 41
- Performance Check Procedure | 43

Appendix | 45
- Appendix A: Pipetting Terms | 45
- Appendix B: Example of a Performance Check | 47
- Appendix C: Z Factor | 48
- Appendix D: Evaporation Loss | 49
- Appendix E: Chemical Resistance of Plastics | 50

FAQ | 51
Air-Displacement Pipette

- Push button
- Large volume adjustment knob

Tip Ejector button

Thumbwheel
(Also known as fine volume adjustment ring)

Volumeter Display

Tip ejector

Shaft
(Also known as tip holder)

Disposable tip

Identification mark

Sealing ring

Filter

Level mark

Serial number

Figure 1
PIPETMAN® DIAGRAM

Positive-Displacement Pipette

- Push button
- Volume Adjustment knob
- Ejector of Capillary and Piston

Volumeter display

Shaft
(Also known as capillary holder)

Disposable capillary and Piston

Serial Number

Figure 2
MICROMAN® E Diagram

Pipettes with different designs are available. For more information, visit www.gilson.com.
SELECTING THE RIGHT PIPETTE

Chapter 1
SELECTING THE RIGHT PIPETTE

Working Principle of Pipettes

Air-Displacement Pipettes
• Recommended for aqueous samples and for general laboratory work.
• Always have a cushion of air (dead volume) between the pipette piston and the liquid sample.
• The piston is integrated into the lower part of the pipette.

Positive-Displacement Pipettes
• Recommended for problem samples (viscous, dense, volatile, radioactive, corrosive, contaminating, hot and cold).
• Direct contact of the piston with the sample (no air cushion).
• The disposable piston is part of the tip (not integrated into the pipette).

Diagram:
- Air cushion
- Shaft
- Disposable tip
- Sample
- Piston seal
- Disposable capillary
- Piston
- Shaft
Working Principle of Air-Displacement Pipettes

When the push button is pressed on an air-displacement pipette, the piston inside the instrument moves down to let air out. **Air is displaced by the piston.** The volume of air displaced is equivalent to the volume of liquid aspirated.

The schematic drawings show how the piston determines the volume of air displaced and subsequently the volume of sample aspirated.

Prepare for Aspiration
The push button is pressed prior to sample aspiration. The piston descends and expels a volume of air equal to the selected volume of liquid.

Aspirate sample
As the push button is released, a partial vacuum is created inside the tip. The ambient atmospheric pressure forces the desired volume of liquid through the orifice into the tip.

Dispense sample
The push button is pressed again. Air pressure increases inside the shaft and the tip. The compressed air pushes the liquid out of the tip.

Working Principle of Positive-Displacement Pipettes
Positive displacement pipettes, such as MICROMAN, work like a syringe. **There is no air cushion between the disposable piston and the sample.** With no elastic air cushion to expand or contract, the aspiration force remains constant, unaffected by the physical properties of the sample.

This allows the positive-displacement operator to pipette very viscous or high density samples, such as glycerol and blood.

Prepare for aspiration
The push button is pressed prior to sample aspiration. The piston descends down to the end of the capillary.

Set volume
The required volume is set. The piston moves down to the appropriate start position.

Aspirate sample
The orifice is then immersed below the liquid surface. As the push button is released, the piston moves up and the ambient pressure forces the desired volume of liquid through the orifice into the capillary.

Dispense sample
The push button is pressed again. The piston moves down and expels the liquid out of the capillary.
The Right Choice for Your Application

The type of analysis to perform, the physical properties of the liquid, and the volume to be handled will determine which pipette to use. It is recommended to select a pipette with a nominal (maximum) volume as close as possible to the desired volume to transfer.

Recommendations for Pipetting Different Volumes

Consider the Physical Properties of Your Sample

For volumes higher than 10 mL, it is suggested to work with a pipette filler like the MACROMAN with plastic or serological pipettes. Regardless of the volume you require, the nature of the sample directly impacts precision and accuracy. Air-displacement pipettes will be better for aqueous liquids whereas positive-displacement pipettes should be used for problem liquids.

<table>
<thead>
<tr>
<th>SAMPLE TYPES</th>
<th>EXAMPLES</th>
<th>RECOMMENDED PIPETTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous</td>
<td>Water, sucrose, Tris, buffers with a pH of 7</td>
<td>Air-displacement.</td>
</tr>
<tr>
<td>Biological</td>
<td>DNA, RNA, proteins</td>
<td>Air-displacement with filter tips</td>
</tr>
<tr>
<td>Viscous</td>
<td>Glycerol, surfactants, oil</td>
<td></td>
</tr>
<tr>
<td>Volatile</td>
<td>Ethanol, hexane, formaldehyde</td>
<td></td>
</tr>
<tr>
<td>Hazardous</td>
<td>Radioactive isotopes, blood, infectious bacteria or viruses</td>
<td></td>
</tr>
<tr>
<td>Corrosive</td>
<td>Acids such as hydrochloric acid or sulfuric acid, bases such as ammonium hydroxide, salts such as sodium chloride</td>
<td>Positive-displacement</td>
</tr>
</tbody>
</table>

Accuracy and Precision While Pipetting Problem Liquids

Positive-displacement pipettes like MICROMAN are the right solution for complete and rapid pipetting of viscous and dense liquids such as oil, syrup, cosmetic cream, liquefied food, paint, glycerol, or buffers.

Positive-displacement pipettes are the unique solution to avoid leakage when pipetting high vapor pressure liquids such as acetone, chloroform, alcohol, or other solvents.
SELECTING THE RIGHT PIPETTE

Specific Pipettes for Specific Vessels

Test tubes and centrifuge tubes are used with all single channel pipettes for sample preparations, such as qPCR templates.

Long test tubes, also called assays tubes, are used with positive-displacement pipettes and pipette fillers with plastic or glass pipettes; these devices are specially designed to reach the bottom of these tubes.

Reagent reservoirs are ideal for dispensing reagents, especially with multichannel pipettes.

96-well and 384-well microplates, as well as 8-well strips, are commonly used with air-displacement multichannel pipettes for applications like ELISA, but also with single channel pipettes. Multichannel pipettes allow transferring 8 to 12 different samples in one shot and filling a microplate 8 to 12 times faster than a single channel pipette.

High Throughput and Repetitive Pipetting

When pipetting in a high throughput setting it is important to have reliable results and to be as efficient as possible. Reliable results means not only having reproducible results with one technician’s samples, but also among all technicians in the lab. There are a variety of ways to improve reliability and efficiency, some of which include using motorized pipettes and/or repetitive pipettes.

User-to-User Variability

Motorized pipettes can help reduce variability between users. There are many factors that can affect your pipetting results, which include setting the volume, pipetting technique, and the rate of aspirating and dispensing. With a motorized pipette you can set the exact volume on the digital display — the motor uses the same pipetting force every time and maintains the same rate of speed when aspirating and dispensing a sample.

Aliquoting

To deliver several aliquots without refilling, you may either choose the repetitive mode of a motorized air-displacement pipette, or use a positive-displacement repeater. Repeaters enable up to 125 aliquots, whereas the number of aliquots with air-displacement motorized pipettes will depend on the pipette volume.

For operations fewer than ten aliquots, using a motorized air-displacement pipette might be the better option.
PIPETTING TECHNIQUES

Chapter 2

PIPETTING TECHNIQUES

Adjust the Volume Display

Reading and Adjusting the Volume
Hold the body of the micropipette in one hand and use the other hand to rotate the thumbwheel or the push button. With the push button, the volume can be easily adjusted with one hand. Push button volume adjustment is available on all MICROMAN pipettes and on PIPETMAN pipettes (except PIPETMAN L) manufactured after April 1995.

A Helpful Hint for Improving Reproducibility and Accuracy
Always finish setting clockwise for best reproducibility. This is how to obtain a clockwise volume setting:

• When decreasing the volume setting, slowly reach the required setting, making sure not to pass the setting.
• When increasing the volume setting, pass the required value by 1/3 of a turn and then slowly decrease to reach the volume, making sure not to pass the setting.

To avoid parallax, hold the pipette in a horizontal position. Adjust the volume until the indicator is lined up with the desired volume.

Correct alignment: accurate reading
Incorrect alignment: error

Notice: To avoid internal damage to your pipette, never attempt to force the volume setting beyond the limits.
Forward or Reverse Mode Pipetting

Air-Displacement / Forward Mode

The forward mode is the standard way of pipetting with an air-displacement pipette like PIPETMAN.

1 Preparation
Hold the instrument in a nearly vertical position. Depress the plunger smoothly to the first stop position.

2 Aspiration
Immerse the pipette tip in the liquid*. Allow the plunger to move up smoothly to the rest position. Wait one second so that all the liquid has time to move up into the tip.

3 Dispense
Place the pipette tip at an angle (10° to 45°) against the inside wall of the receiving vessel. Depress the plunger smoothly to the first stop position.

4 Purge
Wait one second, then depress the plunger to the second stop position. This purge stroke removes any remaining sample from the tip. Remove pipette tip end from sidewall by sliding it up the wall.

5 Home
Allow the plunger to move up to the rest position.

In general, precision in forward mode depends on precise draining by air pressure (air-displacement pipettes) or internal wiping of the pipette barrel (positive-displacement pipettes).

<table>
<thead>
<tr>
<th>VOLUME</th>
<th>IMMERSION DEPTH (MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 — 1 µL</td>
<td>1</td>
</tr>
<tr>
<td>1 — 100 µL</td>
<td>2 — 3</td>
</tr>
<tr>
<td>101 — 1000 µL</td>
<td>2 — 4</td>
</tr>
<tr>
<td>1001 µL — 10 mL</td>
<td>3 — 6</td>
</tr>
</tbody>
</table>

Pre-Rinsing
To obtain greater uniformity and precision of dispensing, it is better to provide identical contact surfaces for all aliquots. This is done by pre-rinsing with the same liquid as the one dispensed.

For pre-rinsing, aspirate with the tip, and then dispense back into the original reservoir or to waste.

Pre-rinse again when adjusting the volume.

* The immersion depth of your tip can have a significant effect on your results (for depth per model, see table above). If the tip is immersed too deeply, droplets will form on the outside of the tip and they will be deposited along with your sample. If the tip is not immersed deeply enough, vortexing will occur and your pipette will not aspirate the selected volume.
Forward or Reverse Mode Pipetting

Air-Displacement / Reverse Mode

The reverse mode is only possible with air-displacement pipettes. It is sometimes used to pipette slightly viscous liquids.

1. **Preparation**
 Hold the instrument in a nearly vertical position. Depress the plunger smoothly to the second stop position.

2. **Aspiration**
 Immerse the pipette tip in the liquid. Allow the plunger to move up smoothly to the rest position. Wait one second so that all the liquid has time to move up into the tip.

3. **Dispense**
 Place the pipette tip at an angle (10° to 45°) against the inside wall of the receiving vessel. Depress the plunger smoothly to the first stop position. Wait one second.

4. **Re-Aspiration**
 If the pipette tip is to be reused for the same sample, maintain the plunger in the intermediate position for subsequent immersion for the next pipetting cycle and restart operation 2.

5. **Complete Purge**
 Wait one second and purge. If the pipette tip is not to be re-used, depress the plunger to purge position over an appropriate waste container and then eject the tip.

In reverse mode pipetting, the purge stroke is used during preparation. During aspiration, an amount of liquid equal to the amount of purged air is added. This amount compensates for the liquid that remains inside the tip during dispensing.
Forward or Reverse Mode Pipetting

Positive-Displacement / Forward Mode

1. Preparation
 Press the plunger button to the first stop. The piston moves to the appropriate position.

2. Aspiration
 Immerse the capillary/piston in the liquid*. Release the plunger, letting it move up to the home position. The piston moves up and the ambient pressure forces the desired volume of liquid through the orifice into the capillary.

3. Dispense
 Press the plunger button to the first stop. The piston moves down and expels the liquid out of the capillary.

4. Ejection
 Press the plunger all the way down to the second and last stop. Capillary and piston are ejected without hand contact.

Wiping
To avoid distorted results linked to the volume pipetted, ensure that no liquid is on the outside part of the tip. If necessary (viscous liquids, such as cream), wipe the outside of the tip or the capillary with a clean medical wipe. Do not touch the orifice. Choose a tissue that is resistant, lint-free, and inert to acids and solvents. Dispose of the tissue in a safe, hygienic manner.

Pre-Rinsing
To pre-rinse, aspirate with the tip and then dispense back into the original reservoir or to waste.

* The immersion depth of your tip can have a significant effect on your results (for depth per model, see table page 20). If the tip is immersed too deeply, droplets will form on the outside of the tip and they will be deposited along with your sample. If the tip is not immersed deeply enough, vortexing will occur and your pipette will not aspirate the selected volume.

NOTICE
When working with high risk specimens, do not wipe the disposable part. Make sure fluid depth penetration does not exceed the recommended immersion depth.*
Tips for Mistake-Free Pipetting

How to Avoid Typical Pipetting Mistakes

MANY FACTORS MAY IMPACT PIPETTING ACCURACY

<table>
<thead>
<tr>
<th>INFLUENCING PARAMETERS AND EFFECTS</th>
<th>CORRECTIVE MEASURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaky/poorely seated pipette tips may affect accuracy by 0.5% to 50%</td>
<td>Using original or recommended pipette tips</td>
</tr>
<tr>
<td>Reuse of pipette tips may affect accuracy by up to 4%</td>
<td>Using pipette tips only once</td>
</tr>
<tr>
<td>The straightness of pipette tips may affect accuracy by up to 10%</td>
<td>Using appropriate tips only</td>
</tr>
<tr>
<td>The difference in vapor pressure of the liquid to be pipetted versus that of the water used for adjustment may affect accuracy by up to 2%</td>
<td>Sufficient pre-wetting of pipette tips</td>
</tr>
<tr>
<td>Failure to wipe pipette tip on the vessel wall can affect accuracy by up to 3%</td>
<td>Wiping of the pipette tip on the vessel wall (wiping distance 8 to 10 mm)*</td>
</tr>
<tr>
<td>Pipette tip immersion depth and handling angle during pipetting may affect accuracy by up to 1%</td>
<td>Holding pipette in a vertical position while pipetting</td>
</tr>
<tr>
<td>Irregular rhythm and timing during pipetting can affect accuracy by up to 1.5%</td>
<td>Applying a consistent pipetting technique</td>
</tr>
<tr>
<td>A leaky piston system can affect accuracy by 1% to 50%</td>
<td>Regularly checking the pipette and the volume aspirated</td>
</tr>
<tr>
<td>Uneven piston movement can affect accuracy by up to 0.5%</td>
<td>Smooth operation of piston</td>
</tr>
</tbody>
</table>

Information extracted from ISO 8655-2 - Annex B

* Gilson recommends touching the tip to the vessel wall at an angle of 10° to 45°.

Pipetting Ergonomics

Take a Few Minutes to Get Organized and Ensure You Have:

1. An appropriate posture
2. The right material
 Gilson offers various pipettes with forces adapted to user preferences. The forces of PIPETMAN L are some of the lowest.
3. The appropriate gestures
4. A good work organization
 A good test is to see if you can rest your elbow comfortably on the work surface. If not, your receptacle may be too low or too high, find the right height.

Take Time to Relax

1. If possible, try to switch periodically between different types of work.
2. Keep an appropriate, unrushed working speed. Let go of the pipette from time to time and give your fingers/hand a (micro) break.

Special Attention Should be Paid to Smooth Pipetting

1. To facilitate uniform timing and motion, keep all necessary items within arm’s reach.
2. Place the most frequently used objects in front of you. The more rarely used items can be placed a little further away from you.
3. The opening of the receptacle for used tips should be at the same height as the end of your pipette.

Use a Pipette Holder

Protect your pipette and always store it vertically on a pipette holder. Pipettes left on a workbench or stored in a drawer can easily come into contact with samples and become contaminated.

[Download the Gilson Ergonomics Poster for increased working comfort in your lab](http://www.gilson.com/resources/ergonomics.pdf)
SELECTING THE RIGHT TIP

Fitting a Disposable Pipette Tip

To Fit a Disposable Tip on a PIPETMAN Single Channel

Hold the micropipette in one hand, lower the pipette into the tip, and use a slight twisting movement to seat the tip firmly on the tip holder of the micropipette to ensure an air-tight seal.

To protect your pipette, avoid tapping the tip onto the pipette like a hammer. Tips are available in TIPACK racks for easy mounting with no hand contact.

To Fit a Disposable Tip on a PIPETMAN Multichannel

To avoid damage to your pipette, Gilson does not recommend hammering or pounding on the tips. The patented ROCKY RACK™ system available on TIPACK, TOWERPACK, BLISTER REFILL and RELOAD PACK makes it extremely easy to fit tips on a multichannel pipette. Tips will not fall off nor will they have to be positioned manually.

Figure 7

Fit a Disposable Pipette Tip on Single and Multichannel Pipettes
To Fit a Capillary Piston (CP) on a MICROMAN
1. Place the plunger button to the second stop.
2. Place the pipette over the tip. The jaws on the pipette will open automatically and seize the piston.
3. Press the pipette down to attach the capillary to the pipette.
4. Return the plunger to the rest position.
5. Press the plunger to the first stop to complete tip attachment.

For an easy CP fitting, choose the new MICROMAN E. The QuickSnap feature makes it as easy to use as a regular pipette.
1. Press the MICROMAN E onto the capillary piston until it is firmly seated.
2. Pick up the CP from the rack.
3. Slowly press the plunger button until you feel and hear a slight click and continue to press to the first stop.
 Then pipette the liquid.

For maximum protection against contamination, capillary pistons for MICROMAN pipettes are available pre-assembled, racked and presterilized.

Ejecting the Used Tip
To avoid touching contaminated tips, hold the pipette over the waste container and press the tip ejector push button.
To eject the tip from MICROMAN, depress the push button completely to the second stop. Discarded tips contain liquid residues, particularly when a pipette is used in reverse mode. Take suitable precautions when discarding disposables.

When to Change a Tip?
When transferring single samples of different liquids, select a new pipette tip for each new liquid. It is strongly recommended to pre-rinse every new pipette tip.
For repetitive dispensing of the same liquid (diluent, buffer, or reagent), use the same pipette tip. This method is economical and efficient. It is advisable to pre-rinse the tip at the beginning of the test series.

Choosing the Best Tip for Your Application
PIPETMAN Tips are available in a variety of packaging options to suit virtually all needs and applications:

Autoclavable Tips
Loose in bulk packaging
An economical solution for routine applications. May be hand loaded in empty tip racks for convenience or for autoclaving in the laboratory.
Racked for easy mounting with no hand contact
TIPACK have a hinged lid to protect against dust.
Convenient 96-well format for filling microplates with a PIPETMAN multichannel and color-coded for easy identification.
Ready for autoclaving in the laboratory.
Tip racks may be reused.
Racked and sterilized for working in sterile conditions
Factory sterilized and delivered in a sealed tip rack.
TOWERPACK refill system
High quality tips in an economic, easy-to-use and eco-friendly rack refill system.
The reload box is reusable and can be repeatedly autoclaved.
Also available in sterilized packaging.

Sterilized Filter Tips
TIPACKS are racked and sterilized with filter
Tips with a filter prevent contaminating aerosols from entering the pipette.
PIPETMAN filter tips are factory irradiated delivered in a sealed tip rack.
STERILPACKS are individually wrapped and sterilized
Opened just before use so the benefit of sterilization is assured right up to the last minute.
A good solution when you only need a few tips.

Capillaries and Pistons for Positive-Displacement Pipettes
Safety first!
Gilson capillary pistons for MICROMAN are made of plastic, eliminating the risk of injury associated with broken glass.
SELECTING THE RIGHT TIP

GILSON GUIDE TO PIPETTING

Although they may look alike, all tips are not equal. The choice of a poor quality tip may jeopardize your results. Choose the pipette tip recommended by the pipette manufacturer for the best accuracy, precision and tip fit, and always check the following points:

Quality of the Tip’s Raw Material
There are many different brands of tips made of varying quality plastics. Gilson selects a specific polypropylene because it is naturally hydrophobic and a low retention material.

Absence of Potential Contaminants
Cleanliness of tips is very important as production residues, such as dust or biological contaminants coming from the production site, may contaminate your samples. Additionally, tips should be chemically resistant and free of additives, such as silicone, dyes, biocides, antistatic agents, as well as traces of metal, such as aluminum, nickel, or zinc.

A trace metal certificate can be obtained from the manufacturer upon request.

Tip Sterilization Methods
1. Beta or gamma radiation of consumables
 This method is used by manufacturers for products sold under the label “sterile”. The penetrating rays are highly effective for the relatively inert plastics used to manufacture pipette disposables. The choice of gamma or beta rays is determined by the type of plastic used to manufacture the tips. PIPETMAN DIAMOND Tips are sterilized using gamma rays and a sterility assurance level SAL 10^{-6} is guaranteed.

2. Ethylene oxide gas
 If the type of plastic to be sterilized cannot withstand beta or gamma radiation, ethylene oxide is used instead. ETO is notably used to sterilize CPs.

Gilson Tip Packaging
Gilson offers a wide range of PIPETMAN Tips packaging to suit all your needs.

Check the tip compatibility table in Gilson Product Guide to match your pipette model with standard or filter tips.

Check Gilson Manual Liquid Handling Catalog

www.gilson.com/ecatalog/index.htm
Types of Contamination and How to Prevent Them

Personal Protective Equipment

PREVENTION
The specific personal protective equipment recommended depends on your laboratory and can include:
- Wear a lab coat.
- Wear gloves.
- Wear protective glasses.
- Wear a mask.
- Wear protective footwear.

LAB BENCH
- Wipe workbench before and after with an appropriate cleaner for your application (cell culture, radioactive components, pathogenic samples...).
- Work under a hood.
- Work behind a radioactivity shield.
- Avoid touching used tips.

Pipette to Sample
Contaminated tips or a contaminated pipette will contaminate your samples.

PREVENTION
- Store pipettes vertically on a holder.
- Eject tips into a designated container.
- Follow laboratory protocol to clean your pipette.
- Use sterile tips when appropriate.
- Change the tip after each sample to avoid cross contamination.

Sample to Pipette
Contamination can occur if the sample or aerosols from the sample are allowed to enter the body of the pipette.

PREVENTION
- To prevent your sample from contaminating the body of your pipette, do not turn the pipette upside down when there is sample in the tip. Always store your pipettes vertically.
- Release the push button slowly.
- Use filter tips to reduce contamination risk.
- Use the corrosion protection kit available for PIPETMAN P1000 (Neo, G, and L).
- For complete protection of the pipette, choose MICROMAN E for problem liquids.
Sample to Sample (Carryover)

CHANGE THE TIP AFTER EACH SAMPLE.

A portion of sample “A” can adhere to the inside wall of the tip after sample delivery. The leftover portion of sample “A” can mix with the next sample “B” and may cause a false test result.

How to prevent aerosol contamination?

It is essential to prevent aerosol contamination when using PCR and other amplification methods, or when pipetting DNA/RNA solutions, infectious materials, radioactive samples, etc.

Gilson offers two solutions:

1. Use a PIPETMAN pipette with PIPETMAN DIAMOND sterilized filter tips when faced with the following situation:
 • Working under sterile conditions.
 • Pipetting aqueous samples.
 • Avoiding cross-contamination.

2. Use a MICROMAN pipette with sterilized capillary pistons when faced with the following situation:
 • Working under sterile conditions.
 • Pipetting viscous samples.
 • Avoiding cross-contamination.

Decontaminating Your Pipette

The solutions mentioned below are options and other solutions may be used. Make sure your decontamination technique is compatible with your pipette material and refer to your laboratory decontamination procedure.

<table>
<thead>
<tr>
<th>CONTAMINATION CAUSES</th>
<th>DECONTAMINATION TECHNIQUES</th>
<th>CLEANING GUIDELINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactive compounds</td>
<td>Detergent—cleaning solution</td>
<td>Disassemble the lower part of your pipette. Fully immerse the contaminated parts* into an ultrasonic bath with a detergent or cleaning solution recommended for laboratory instruments. It is strongly recommended to rinse the pipette several times with water and dry it thoroughly.</td>
</tr>
<tr>
<td>Viruses, bacteria, mycoplasma, fungi</td>
<td>UV radiation</td>
<td>Work surfaces may be decontaminated by exposure to 300 nm UV light for 15 minutes. UV will not damage Gilson PIPETMAN materials. Note that the UV rays cannot penetrate inside the pipette and cannot be considered as a decontamination protocol for the internal components of the pipette.</td>
</tr>
<tr>
<td>DNA, RNA, biological samples</td>
<td>10 % bleach solution or UV radiation</td>
<td>Disassemble the lower part of your pipette. Fully immerse the contaminated parts* into at least 3% sodium hypochlorite for at least 15 minutes. Rinse thoroughly with distilled water and dry. Exposure to UV light for 30–60 minutes will further reduce DNA contamination, but not fully eliminate it from the pipette surface.</td>
</tr>
<tr>
<td>Aqueous solutions and buffers</td>
<td>Water cleaning</td>
<td>Disassemble the lower part of your pipette. Rinse the contaminated parts thoroughly with distilled water and dry.</td>
</tr>
<tr>
<td>Acids/alkalis</td>
<td>Detergent—cleaning solution</td>
<td>Disassemble the lower part of your pipette. Fully immerse the contaminated parts* into an ultrasonic bath with a detergent or cleaning solution recommended for laboratory instruments. Rinse the pipette several times with water and dry it thoroughly.</td>
</tr>
<tr>
<td>Organic solvents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteins</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* PIPETMAN parts can be autoclaved according to the User’s Guide for the pipettes. Refer to your model User’s Guide for the defined parts and the recommended conditions.

NOTE

Autoclaving has a limited spectrum of action and will not destroy RNase, for example.

If pipette brands other than Gilson are used, please make sure the material is compatible with the appropriate cleaning solutions.

* Check the User’s Guide for specific parts to clean by immersion.

Figure 14
Sample Carryover
Pipette Specifications According to ISO 8655

The ISO 8655 standard gives the accuracy and precision limits as both absolute and relative values. Specifications will depend on the technique used (air-displacement, positive-displacement, repetitive pipettes).

What are Published Manufacturer Specifications?

Specifications are established by the manufacturer. They guarantee, in terms of accuracy and precision, the performance of all pipettes of a given brand and a given model at a certain volume setting.

Example of Maximum Permissible Error for a 1000 μL Pipette:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>VOLUME (μL)</th>
<th>SYSTEMATIC ERROR (μL)</th>
<th>RANDOM ERROR (μL)</th>
<th>SYSTEMATIC ERROR (μL)</th>
<th>RANDOM ERROR (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1000</td>
<td>100</td>
<td>± 3</td>
<td>≤ 0.6</td>
<td>± 8</td>
<td>≤ 3</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>± 4</td>
<td>≤ 1</td>
<td>± 8</td>
<td>≤ 3</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>± 8</td>
<td>≤ 1.5</td>
<td>± 8</td>
<td>≤ 3</td>
</tr>
</tbody>
</table>

These specifications are defined for pipettes used in forward mode. The gravimetric method is used with the temperature of the distilled water and all other conditions stabilized between 15°C and 30°C. The values given include all components of error due to both normal handwarming and the changing of the tip.

NOTICE

In order to comply with the ISO 8655 standard, the specifications of the pipette must be within the maximum permissible errors.

Repair in the Lab or Return for Service?

PROBLEM

- Your pipette is more than one year old, and records show that it has not been serviced within the past 12 months.
- For models other than microvolume pipettes (from 2 to 10 μL), you have identified damage to the push button, connecting nut, piston seal, O-ring, tip holder, or tip ejector.
- For all other damage, and for microvolume pipettes (from 2 to 10 μL).

SOLUTION

The conformity to the acceptable maximum permissible errors should be tested at least once a year (ISO 8655-1). If you do not have the required equipment or if the pipette fails a performance check, return the pipette to your Local Gilson representative for service. Between service periods, Gilson recommends performing a two-minute inspection (Refer to QUICK PIPETTE DIAGNOSIS on page 37).

- Spare parts may be ordered from your Local Gilson representative. These parts can be replaced on site without any impact on the performance of your pipette.
- Return the pipette for service.
Quick Pipette Diagnosis

Pipette Maintenance

Regular maintenance and service of your pipette will ensure reliable results. Refer to your product User’s Guide for manufacturer’s recommendations.

TWO-MINUTE INSPECTION

Use the PIPETMAN Quick Inspection video and the Two-Minute Inspection poster to diagnose defects and decide whether the pipette should be repaired on site or returned to your representative for service. Direct any maintenance or service questions to your local Gilson distributor.

Refer to the Two-Minute Inspection video and the poster for a walk through of basic pipette performance evaluation.

Good routine maintenance helps prevent costly repairs.

How to Calculate Volumetric Accuracy and Precision

“Accuracy” and “precision” are qualitative terms. The corresponding quantitative terms are “systematic error” and “random error”. Conversion from weight to volume must be calculated first.

Evaluation of Accuracy

The specified accuracy is the limit to the systematic error, which is the difference between the mean volume of actual measurements and the true value of the volume set on the instrument. The systematic error (E) can be estimated as follows:

\[
E = \bar{V} - V_0
\]

\(E\) systematic error

\(V_0\) nominal volume

\(\bar{V}\) mean volume

Evaluation of Precision

The specified precision is the limit to the random error, which is the distribution of the measured values around a mean value. For pipettes, precision refers to a within-series group of data, and therefore to repeatability.

The random error is then quantified by the standard deviation of measurements performed at a given volume setting under the same measuring conditions. The standard deviation (SD or “s”) can be estimated as follows:

\[
SD = \sqrt{\frac{\sum_{i=1}^{n} (V_i - \bar{V})^2}{n - 1}}
\]

\(\bar{V}\) mean volume

The precision of a pipette can also be expressed as a percentage of the mean volume. This is known as relative standard deviation (RSD) or coefficient of variation (CV), and is estimated as follows:

\[
CV = \frac{SD}{\bar{V}} \times 100
\]

Factors affecting accuracy:

- Temperature
 (temperature difference between delivery device and liquid)

- Sample density
 (affects the liquid volume aspirated into the tip)

- Pipetting technique

NOTE: The mean value and number of replicates must be stated, and the experimental procedure used must be described in such a way that other workers can repeat it.
Pipette Calibration

Pipette calibration should be carried out by trained personnel on a regular basis to quantify your pipette performance.

Calibration of Pipettes in a Quality System

The main objective of pipette calibration in a quality system is to ensure that dispensing is carried out with the intended accuracy. Frequently, error limits are adopted from the manufacturer’s specifications, although far less accuracy is needed to perform the task at hand. It should be kept in mind that in an (uncontrolled) laboratory environment, the manufacturer’s specifications may not be achieved.

Consequently, users should define their own acceptance limits according to the application involved and ambient conditions. Another option is to use the acceptance limits stated in standards, such as ISO 8655. The actual standard specifications, and for highest accuracy the manufacturer’s specifications, should be used only when testing can be performed in a controlled environment using distilled or deionized water.

Device Requirements and Test Conditions

An analytical balance must be used. The scale graduation value of the balance should be chosen according to the selected pipette volume. The ISO 8655 standard states the accuracy and precision limits as both absolute and relative values.

The values are specified for fixed single channel air-displacement pipettes. With variable volume pipettes, the nominal volume is the maximum selectable volume.

The μL limit of the nominal volume applies to every selectable volume throughout the volume range. For example, for a 10–100 μL pipette the maximum permissible accuracy limit (systematic error) is 0.8 μL and the maximum permissible precision limit (random error) is 0.3 μL. With multichannel pipettes these values are further doubled.

Procedure to Check Calibration

The pipette is checked with the nominal volume (maximum volume), approximately 50% of the nominal volume and with the minimum volume specified by the manufacturer or 10% of the maximum volume, whichever is higher.

If the calculated results are within the selected limits, the adjustment of the pipette is correct.

For more details regarding pipette service, download Gilson Verification Procedure

www.gilson.com/resources/verification.pdf
Calibration with the Gravimetric Method

The gravimetric method is recommended by pipette manufacturers and international standard organizations (ISO 8655). It is based on the determination of the weight of water samples delivered by the pipette. Implementation of this method requires the strict monitoring of environmental conditions and the systematic use of adequate and controlled equipment.

General Considerations

Gilson pipettes are designed to compensate for the effects of normal handwarming during the test series. However, the instrument being evaluated must not be over-warmed by extensive handling.

- Barometer with a standard uncertainty of max 0.5 KPa
 A calibrated barometer to check the atmospheric pressure.
- Distilled water
 Use distilled or deionized water conforming to grade 3 as specified in ISO 3696, degassed or air-equilibrated. The water shall be at room temperature.
- Balances
 Laboratory balances required for the test should meet or exceed the following performances:
 - Balance resolution
 - Repeatability and linearity
 - Uncertainty of measurement

<table>
<thead>
<tr>
<th>SELECTED VOLUME (V) UNDER TEST</th>
<th>BALANCE RESOLUTION (MG)</th>
<th>REPEATABILITY AND LINEARITY</th>
<th>STANDARD UNCERTAINTY OF MEASUREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 μL ≤ V ≤ 10 μL</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>10 μL < V ≤ 100 μL</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>100 μL < V ≤ 1000 μL</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>V < 10 mL</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

- Vessels
 Test equipment should correspond to the following indications:

<table>
<thead>
<tr>
<th>EXAMPLES OF INSTRUMENTS</th>
<th>VOLUMES</th>
<th>SAMPLE RESERVOIR</th>
<th>WEIGHING VESSEL</th>
<th>BALANCE RESOLUTION</th>
<th>OTHER SCALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10, P100, P500</td>
<td>0.1 to 20 µL</td>
<td>Ø 15 mm H 10 mm</td>
<td>Ø 13.5 mm H 13 mm</td>
<td>0.001 mg</td>
<td>Std</td>
</tr>
<tr>
<td>F2 (F2O), F500</td>
<td>20 to 200 µL</td>
<td>Ø 20 mm H 10 mm</td>
<td>Ø 15 mm H 50 mm</td>
<td>0.01 mg</td>
<td>Std</td>
</tr>
<tr>
<td>F500, F1000</td>
<td>> 200 to 5000 µL</td>
<td>Ø 50 mm H 50 mm</td>
<td>Ø 35 mm H 10 mm</td>
<td>0.1 mg</td>
<td>Std</td>
</tr>
<tr>
<td>F1000, F5000, F10000</td>
<td>> 5000 µL</td>
<td>Ø 50 mm H 50 mm</td>
<td>Ø 50 mm H 50 mm</td>
<td>0.1 mg</td>
<td>Lid</td>
</tr>
<tr>
<td>P10 mL</td>
<td>0.1 to 20 mL</td>
<td>250 mL beaker</td>
<td>Ø 40 mm H 100 mm</td>
<td>0.1 mg</td>
<td>Std</td>
</tr>
</tbody>
</table>

Recommended equipment

- Calibrated thermometer with a standard uncertainty of max 0.2°C
 A calibrated thermometer readable to 0.1°C to measure both ambient and water temperatures at the beginning and at the end of the test series.
- Hygrometer with a standard uncertainty of max 10%
 A calibrated hygrometer to check the constant of humidity in the air during the test.

Some Remarks about Balances

With modern analytical balances, a laboratory needs only two balances to check an entire stock of pipettes ranging from 0.1 µL to 10 mL. A good combination would be one six-digit balance and another one that works on two scales, for example 50 g with sensitivity 0.01 mg and 200 g with 0.1 mg sensitivity.

The test balances should be calibrated, maintained, and approved by the national department of weighing and measurements. To minimize vibration, the balances should be set up on a marble table. Keep the balance area free of drafts and the ambient area free of dust.

From Weight to Volume

Conversion to volume must take into account the density of the liquid as well as evaporation during the cycle time. For each measurement, the corresponding volume (V) can be calculated as follows:

Note for measurements higher than 50 µL, the evaporation factor can be disregarded.

For your reference, a complete example is given in Appendix A on page 45.

\[
V_i = (W_i + \bar{e}) Z
\]

\(V_i \) is the weight as read on the balance
\(e \) is the mean evaporating loss during the cycle time
\(Z \) is the Z factor to be taken into account

\[Z = \frac{1}{4} (e_1 + e_2 + e_3 + e_4) \]

A procedure for the determination of \(e \) is given in Appendix C on page 48.

Estimation of the Z Factor (Conversion Factor)

The Z factor is not just equal to the density of water adjusted to the local temperature and pressure parameters. It must also take into account the air density and the density of the weights used to calibrate the balance.

For very low volumes, application of the Z factor may not affect the final result.

The detailed formula as well as the table indicating the Z factor to be taken into account are provided in Appendix B on page 47.

Estimation of the E Factor (Evaporation Loss)

Evaporation that occurs during the gravimetric test depends mainly on temperature, humidity and cycle time of work. It may have a noticeable effect on small volume measurements (50 µL or less).

Evaporation loss is estimated by running a series of four simulated weighing cycles and calculating the mean weight loss per weighing cycle in mg. Perform each weighing cycle without adding the aspirated liquid to the vessel.

Dispense the liquid into a dummy vessel. The mean evaporation, \(\bar{e} \), is calculated as follows:

\[\bar{e} = \frac{1}{4} (e_1 + e_2 + e_3 + e_4) \]

A procedure for the determination of \(e \) is given in Appendix C on page 48.
Performance Check Procedure

When to Perform the Test?

Since accuracy and precision have a direct influence on the quality of analytical results, it is imperative that the performance of individual pipettes be compared regularly with manufacturer’s specifications.

Gravimetric analysis is a practical, widely used method for testing the performance (accuracy and precision) of a pipette.

Pour distilled or deionized water from the container into the weighing vessel to a depth of at least 3 mm.

Record the test conditions (ambient and water temperature, relative humidity, barometric pressure).

Select the test volume of your variable-volume piston pipette.

Fit the tip or capillary/piston assembly to the pipette (the manufacturer’s specifications are valid only when the test is performed with the manufacturer’s tips).

Pre-wet pipette tip five times to reach humidity equilibrium in the dead volume of the pipette, but do not take into account for calculations.

Change tip.

Pre-wet the tip once.

Pipette the test volume.

Determine tare mass (reset balance).

Open balance door, retrieve weighing container, deliver sample, replace on the balance and close the door.

After allowing display to stabilize, record the weight.

Repeat the test cycle until ten measurements have been recorded as a series of weights \(W_i \) to \(W_{10} \).

Pour distilled or deionized water from the container into the weighing vessel to a depth of at least 3 mm.

Record the test conditions (ambient and water temperature, relative humidity, barometric pressure).

Select the test volume of your variable-volume piston pipette.

Fit the tip or capillary/piston assembly to the pipette (the manufacturer’s specifications are valid only when the test is performed with the manufacturer’s tips).

Pre-wet pipette tip five times to reach humidity equilibrium in the dead volume of the pipette, but do not take into account for calculations.

Change tip.

Pre-wet the tip once.

Pipette the test volume.

Determine tare mass (reset balance).

Open balance door, retrieve weighing container, deliver sample, replace on the balance and close the door.

After allowing display to stabilize, record the weight.

Repeat the test cycle until ten measurements have been recorded as a series of weights \(W_i \) to \(W_{10} \).

Calculate the accuracy and the precision and compare with manufacturer’s or ISO 8655-2 specifications. (To calculate accuracy and precision, refer to HOW TO CALCULATE VOLUMETRIC ACCURACY AND PRECISION on page 38.)

NOTE

Always check your pipette for mechanical faults (Refer to TWO-MINUTE INSPECTION on page 37) before performing a gravimetric test.

<table>
<thead>
<tr>
<th>FREQUENCY*</th>
<th>CONTROL</th>
<th>ACTION</th>
<th>WHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>Preventive maintenance</td>
<td>Leak test (see the Two-Minute Inspection poster)</td>
<td>End-users</td>
</tr>
<tr>
<td>Weekly to up to every three months</td>
<td>Preventive maintenance</td>
<td>Accuracy check Cleaning & Diagnosis: - Visual inspection - Function check</td>
<td>End-users</td>
</tr>
<tr>
<td>Annually</td>
<td>Complete maintenance</td>
<td>Replacement spare parts of first level (seals/O-rings, tip holder...) Adjustment - Calibration</td>
<td>Gilson Authorized Service Center & End-users</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replacement spare parts of second level (Piston, volumeter, operating rod) Adjustment - Calibration</td>
<td>Gilson Authorized Service Center</td>
</tr>
</tbody>
</table>

* Frequency should be adapted to the type of sample, the number of pipetting tasks and the environmental conditions of the laboratory.
Appendix A: Pipetting Terms

Accuracy*
Closeness of agreement between a measured quantity value and a true quantity value of a measurand. Note: “accuracy” is a qualitative concept.

Measurement Error*
Measured quantity value minus a reference quantity value. Comment: this difference or deviation (positive or negative) may be expressed either in the units in which the quantity is measured (absolute error), or as a percentage of the true value (relative error).

Random Error*
Component of measurement error that in replicate measurements varies in an unpredictable manner. Notes:
1. Random error is equal to error minus systematic error.
2. Because only a finite number of measurements can be made, it is possible to determine only an estimate of random error.

Systematic Error*
Component of measurement error that in replicate measurements remains constant or varies in a predictable manner. Notes:
1. Systematic error is equal to error minus random error.
2. Like true value, systematic error and its causes cannot be completely known.
Comment: systematic error quantifies the error of accuracy of a pipette.

Good Laboratory Practice
Good Laboratory Practice (GLP) is concerned with the organizational process and the conditions under which laboratory studies are planned, performed, monitored, recorded, and reported.

Measurand*
Particular quantity intended to be measured. Example: vapor pressure of a given sample of water at 20°C. Note: the specification of a measurand may require statements about quantities such as time, temperature, and pressure.

Dispenser
An instrument for delivering predetermined volumes of liquid from a reservoir. The reservoir may be integrated into the instrument or connected externally.

Aliquot
Measured portion of a homogeneous entity. A general term referring to multiple samples of any solution, mixture, etc.

Air Cushion
Also called “dead volume”, the air cushion is the volume of air located between the lower part of the pipette piston and the surface level of the sample.

Pipette/Pipetter
An instrument for transferring a predetermined volume of liquid from one vessel to another. A pipetter is not connected to a reservoir.

Precision*
Closeness of agreement between indications or measured quantity values obtained by replicate measurements on the same or similar objects under specified conditions.

Nominal Value*
Rounded or approximate value of characterizing quantity of a measuring instrument or measuring system that provides guidance for its appropriate use. Examples:
- 1 L as the value marked on a single-mark volumetric flask,
- 100 μL as the setting appearing on the volumeter of a pipette.

Repeatability* (of Results of Measurements)
Measurement precision under repeatability conditions of measurement.

Sample
The appropriate representative part of a liquid to be analyzed. The term “test sample” is used when necessary to avoid confusion with the statistical term “random sample from population.”

True value
True value is a value that would be obtained by a perfect measurement.

Working range
Total volume and temperature range, as well as ambient conditions, for which instrument performance is specified. Note: do not select volumes outside recommended limits.

* Definitions abstracted from VIM (International Vocabulary of Metrology).
Appendix B: Example of a Performance Check

Below is an example of how to evaluate the performance of PIPETMAN P10 at 1 μL.

1. Determine the mean value \(\bar{e} \) of the evaporation loss \(e_i \) that occurs during your pipetting cycles. Proceed as described in appendix III to determine \(e_i \).

\[
\bar{e} = \frac{1}{m} \sum_{i=1}^{m} e_i
\]

\(m \) : number of weighings
\(e_1 = 0.016 \text{ mg} \quad e_2 = 0.021 \text{ mg} \quad e_3 = 0.018 \text{ mg} \quad e_4 = 0.017 \text{ mg} \)

\(\bar{e} = \frac{(e_1+e_2+e_3+e_4)}{4} = 0.018 \text{ mg/pipetting cycle} \)

2. Change the pipette tip and perform the first weighing. Then, keep a regular cycle and perform the 10 following measurements.

\[
\begin{align*}
W_r &= 0.957 \text{ mg} \\
W_1 &= 0.968 \text{ mg} \\
W_2 &= 0.960 \text{ mg} \\
W_3 &= 0.984 \text{ mg} \\
W_4 &= 0.942 \text{ mg} \\
W_5 &= 0.969 \text{ mg} \\
W_6 &= 0.966 \text{ mg} \\
W_7 &= 0.955 \text{ mg} \\
W_8 &= 0.972 \text{ mg} \\
W_9 &= 0.958 \text{ mg} \\
W_{10} &= 0.967 \text{ mg}
\end{align*}
\]

3. Calculate the mean weight

\[
\bar{W} = \frac{1}{n} \sum_{i=1}^{n} W_i
\]

\(n \) : number of weighings
\(W_r \): rinsing measurement which is disregarded for the calculation

\[
\bar{W} = \frac{(W_r + W_1 + W_2 + W_3 + W_4 + W_5 + W_6 + W_7 + W_8 + W_9 + W_{10})}{10} = 0.964 \text{ mg}
\]

4. Calculate the mean volume

For a temperature of 21.5°C and an air pressure of 1013 hPa, the Z factor is equal to 1.0032 μL/mg (see table in Appendix II).

\[
\bar{V} = (\bar{W} + \bar{e}) \times Z
\]

5. Evaluate accuracy

Systematic error (E):

\[
E = \frac{\bar{V} - V_0}{V_0}
\]

Vo true value on the instrument

\[
E = 0.985 \cdot 1 = 0.015 \mu\text{L}
\]

Relative error (E%):

\[
E\% = \frac{\bar{V} - V_0}{V_0} \times 100 / V_0
\]

\[
E\% = \frac{(\bar{V} - V_0)/V_0}{1} = -1.50\%
\]

6. Evaluate precision (repeatability)

Standard Deviation (SDw):

\[
SD_w = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (W_i - \bar{W})^2}
\]

\[
SD_{w^*} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (W_i - \bar{W})
\]

Random error (SDv):

\[
SD_v = 0.011 \mu\text{L}
\]

\[
SD_v = SD_w \times Z
\]

\[
SD_v = 0.011 \times 1.0032 = 0.011 \mu\text{L}
\]

Appendix C: Z Factor

The reference calculation equation is:

\[
Z = \frac{1}{(P_W - P_A)} [1 - \frac{P_A}{P_B}]
\]

Where:

- \(P_W \) = density of air at t°C
- \(P_A \) = density of the test liquid at t°C
- \(P_B \) = density of the balance weights. Use 8 g/cc for PB

Values of the conversion factor Z (μL/mg) as a function of temperature and pressure for distilled water.

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>AIR PRESSURE HPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.0018</td>
</tr>
<tr>
<td>15.5</td>
<td>1.0018</td>
</tr>
<tr>
<td>16</td>
<td>1.0019</td>
</tr>
<tr>
<td>16.5</td>
<td>1.0020</td>
</tr>
<tr>
<td>17</td>
<td>1.0021</td>
</tr>
<tr>
<td>17.5</td>
<td>1.0022</td>
</tr>
<tr>
<td>18</td>
<td>1.0023</td>
</tr>
<tr>
<td>18.5</td>
<td>1.0024</td>
</tr>
<tr>
<td>19</td>
<td>1.0025</td>
</tr>
<tr>
<td>19.5</td>
<td>1.0026</td>
</tr>
<tr>
<td>20</td>
<td>1.0027</td>
</tr>
<tr>
<td>20.5</td>
<td>1.0028</td>
</tr>
<tr>
<td>21</td>
<td>1.0029</td>
</tr>
<tr>
<td>21.5</td>
<td>1.0030</td>
</tr>
<tr>
<td>22</td>
<td>1.0031</td>
</tr>
<tr>
<td>22.5</td>
<td>1.0032</td>
</tr>
<tr>
<td>23</td>
<td>1.0033</td>
</tr>
<tr>
<td>23.5</td>
<td>1.0034</td>
</tr>
<tr>
<td>24</td>
<td>1.0035</td>
</tr>
<tr>
<td>24.5</td>
<td>1.0036</td>
</tr>
<tr>
<td>25</td>
<td>1.0037</td>
</tr>
<tr>
<td>25.5</td>
<td>1.0038</td>
</tr>
<tr>
<td>26</td>
<td>1.0039</td>
</tr>
<tr>
<td>26.5</td>
<td>1.0040</td>
</tr>
<tr>
<td>27</td>
<td>1.0041</td>
</tr>
<tr>
<td>27.5</td>
<td>1.0042</td>
</tr>
<tr>
<td>28</td>
<td>1.0043</td>
</tr>
<tr>
<td>28.5</td>
<td>1.0044</td>
</tr>
<tr>
<td>29</td>
<td>1.0045</td>
</tr>
<tr>
<td>29.5</td>
<td>1.0046</td>
</tr>
<tr>
<td>30</td>
<td>1.0047</td>
</tr>
</tbody>
</table>

Weights conforming to International Recommendation No. 33 of OIML have been adjusted to give results when weighing in air as if the density of the weights were 8.0 g/mL.
Appendix D: Evaporation Loss

Procedure for the Determination of Evaporation Loss.

Use the same distilled water, weighing vessel, and balance as you will be using for the gravimetric check.

1. Half fill the weighing vessel with distilled water.
2. Cover the weighing vessel with its lid and place it on the balance using a pair of tweezers.
3. Aspirate a sample.
4. Tare the balance and take the weighing vessel out of the balance.
5. Take off the lid with tweezers.
6. Dispense the sample into a dummy vessel.
7. Replace the lid on the weighing vessel and, using tweezers, replace the vessel on the balance.
8. Read the negative result e1 (record the absolute value).
9. Repeat steps 3 to 8, three times to obtain e2, e3, and e4.
10. Calculate the evaporation loss ee using the formula:

 \[
 \overline{e} = \frac{1}{4} (e_1 + e_2 + e_3 + e_4)
 \]

 Under normal conditions, this value is usually between 0.01 mg and 0.03 mg.

Appendix E: Chemical Resistance of Plastics

<table>
<thead>
<tr>
<th>Product</th>
<th>Acetone</th>
<th>Ethyl acetate</th>
<th>Acetic acid</th>
<th>Acetic anhydride</th>
<th>Acetophenone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>20 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>N/A</td>
</tr>
<tr>
<td>Product</td>
<td>30 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>N/A</td>
</tr>
<tr>
<td>Product</td>
<td>50 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>N/A</td>
</tr>
<tr>
<td>Product</td>
<td>100 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Hydrazine</th>
<th>Hydrazine nitrate</th>
<th>Hydrobromic acid</th>
<th>Hydrobromic acid</th>
<th>Hydrochloric acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>20 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>30 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>50 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>100 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Acetic acid</th>
<th>Acetic anhydride</th>
<th>Acetonitrile</th>
<th>Acetone</th>
<th>Acetamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>20 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>30 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>50 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>100 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Acetic acid</th>
<th>Acetic anhydride</th>
<th>Acetone</th>
<th>Acetamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>20 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>30 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>50 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>100 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Acetic acid</th>
<th>Acetic anhydride</th>
<th>Acetone</th>
<th>Acetamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>20 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>30 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>50 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>100 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Acetic acid</th>
<th>Acetic anhydride</th>
<th>Acetone</th>
<th>Acetamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>20 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>30 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>50 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>100 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Acetic acid</th>
<th>Acetic anhydride</th>
<th>Acetone</th>
<th>Acetamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>20 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>30 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>50 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Product</td>
<td>100 %</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

PET = Polyethylene Terephthalate
Nitrile = Nitrile
EPDM = Ethylene Propylene
LCP = Liquid Cristal Polymer
PA = Polymide
PET = Polybutylene Terephthalate
PC = Polycarbonate
PE = Polyethylene
PVDF = Polivinylidene Fluoride

TPX = Polymethylpentene
POM = Polyoxymethylene
PP = Polypropylene
++ = No chemical degradation
+ = Medium resistance to chemical agents
- = Low resistance to chemical agents
N/A = No data available

49 APPENDICES | GILSON GUIDE TO PIPETTING

GILSON GUIDE TO PIPETTING | USER'S GUIDE 50
Question: I have to pipette 100 μL, several pipettes can be used, which one should I choose?
Answer:
• According to the properties of the liquid to be handled, air-displacement or positive-displacement should be chosen.
• P100 is recommended for best precision. P200 can be used, but make sure that specifications are adapted to your protocol.

Question: When should I pre-rinse the tip?
Answer:
Pre-rinsing should be performed:
• every time you change a tip,
• every time you increase the volume setting.

Question: How can I prevent piston corrosion?
Answer: After contact with corrosive liquids, a piston should be cleaned with alcohol and a soft tissue. Take care to avoid shocks or scratches.
Use:
• filter tips,
• corrosion protection kit,
• positive-displacement pipette.

Question: Tips do not fit well. What should I do?
Answer:
• Always use Gilson brand tips for Gilson pipettes.
• Push upward on the tip ejector to make sure it is positioned properly.
• Clean the tip holder with alcohol. If it is worn or has been chemically attacked, order a new part from your Local Gilson representative.

Question: What is accuracy?
Answer:
Closeness of agreement between a measured quantity value and a true quantity value of a measurand.
Notes: “accuracy” is a qualitative concept. Definition abstracted from VIM (International Vocabulary of Metrology).

Question: What is precision?
Answer:
Closeness of agreement between indications or measured quantity values obtained by replicate measurements on the same or similar objects under specified conditions.
Note: Definition abstracted from VIM (International Vocabulary of Metrology).

Accurate but not precise
Precise but not accurate
Accurate and precise